skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ickert, Ryan B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Oceanic plateaus are common in modern oceanic basins and will ultimately collide with continental subduction zones. Despite the frequency of these events, complete sedimentary records of oceanic plateau collision and accretion have remained limited to only a few Cenozoic examples with excellent exposure and tectonic context. Our study focuses on building a stratigraphic record of plateau collision using the sedimentary strata deposited on the Siletzia oceanic plateau, which accreted to the Pacific Northwest at ca. 50 Ma. By combining previously published provenance and stratigraphic data with new lithofacies and geologic mapping, measured stratigraphic sections, conglomerate clast counts, and U-Pb zircon geochronology, we were able to divide the strata of the northern Olympic Peninsula in Washington, USA, into precollisional, syn-collisional, and postcollisional stages. Precollisional strata include early Eocene deep-marine hemipelagic to pelagic mudstones of the Aldwell Formation that were deposited directly on Siletzia basalts. These strata were deformed during collision and are separated from the overlying syn-collisional middle Eocene sandstone and conglomerate of the marine (?) Lyre Formation by an angular unconformity. Postcollisional strata were deposited by submarine fans and include interbedded sandstone and siltstone of the Hoko River and Makah formations. These units initially record the filling of isolated trench-slope basins by late Eocene time before eventual integration into an Oligocene regional forearc basin as the accreted Siletzia plateau began to subside. Our chronostratigraphy permits the correlation of basin strata across tectonic domains and provides more general insight into how forearc sedimentary systems evolve following the accretion of a young, buoyant oceanic plateau. 
    more » « less
    Free, publicly-accessible full text available November 22, 2025
  2. Abstract U-Pb geochronology by isotope dilution–thermal ionization mass spectrometry (ID-TIMS) has the potential to be the most precise and accurate of the deep time chronometers, especially when applied to high-U minerals such as zircon. Continued analytical improvements have made this technique capable of regularly achieving better than 0.1% precision and accuracy of dates from commonly occurring high-U minerals across a wide range of geological ages and settings. To help maximize the long-term utility of published results, we present and discuss some recommendations for reporting ID-TIMS U-Pb geochronological data and associated metadata in accordance with accepted principles of data management. Further, given that the accuracy of reported ages typically depends on the interpretation applied to a set of individual dates, we discuss strategies for data interpretation. We anticipate that this paper will serve as an instructive guide for geologists who are publishing ID-TIMS U-Pb data, for laboratories generating the data, the wider geoscience community who use such data, and also editors of journals who wish to be informed about community standards. Combined, our recommendations should increase the utility, veracity, versatility, and “half-life” of ID-TIMS U-Pb geochronological data. 
    more » « less